domingo, 26 de abril de 2009
quinta-feira, 11 de dezembro de 2008
RELATO DE CARLA
E o blog, o blog foi uma expêriencia ótima, serviu para mostrar que matemática não são apenas números, que pode ir além da sala de aula, que pode nos influênciar a procurar novos jeitos de aprender e estudar. O blog...neste ano nos ajudou a entender e fixar a matéria...olha os poliedros..foi ótima a atividade que fizemos em sala de aula montando cada um deles..o poliedro do meu grupo era o icosaedro, era meio complicado, mas o resultado final ficou excelente....Depois deixamos uma mensagem parabenizando a nossa escola por seus 15 aninhos, 15 anos muito bons, que só fez evoluir e, consequentemente passou isso para seus alunos que são gratos por isso...nossa, e os fractais, que mundo fantástico de formas e cores impressionantes, e que convivemos diariamente sem saber...graças ao blog e a professora agora sei o que são e que existem.
Relato da Jéssica
Geometria Analítica
sexta-feira, 26 de setembro de 2008
Veja o mundo com outros olhos....Fractais
Nos últimos anos, diferentes definições de fractais têm surgido. No entanto, a noção que serviu de fio condutor a todas as definições foi introduzida por Mandelbrot através do neologismo "Fractal", que surgiu do latino fractus, que significa irregular ou quebrado.
Os fractais são formas geométricas abstratas de uma beleza incrível, com padrões complexos que se repetem infinitamente, mesmo limitados a uma área finita. Mandelbrot, constatou ainda que todas estas formas e padrões, possuíam algumas características comuns e que havia uma curiosa e interessante relação entre estes objetos e aqueles encontrados na natureza.
Benoît Mandelbrot
Benoît Mandelbrot nasceu em Varsóvia (Polônia) em 1924, a sua família emigrou para França, devido à 2ª guerra mundial. Tinha um tio, Szolem Mandelbrot, que era professor de Matemática no “Collège de France” e era o responsável pela sua educação.
Mandelbrot, começou a ficar insatisfeito em relação à Geometria Clássica, uma vez, que ao explorar e resolver diversos problemas, os pontos, as linhas retas, os círculos, entre outros, não demonstraram ser abstrações adequadas para compreender a complexidade da natureza.
A pesquisa de Mandelbrot forneceu teorias matemáticas para o fenômeno da probabilidade errática e métodos de auto-semelhanças em probabilidades. Levou a cabo uma pesquisa sobre processos esporádicos, termodinâmica, linguagens naturais, astronomia, geomorfologia, gráficos e arte com a ajuda do computador e criou e desenvolveu a geometria fractal.
Este prodigioso e ilustre matemático contemporâneo, é conhecido mundialmente como sendo o único responsável pelo enorme interesse nos chamados objetos fractais. Hoje em dia a sua geometria é conhecida através de bonitas gravuras coloridas que, enriqueceram tanto a matemática moderna como a arte e cujas aplicações já se estendem aos mais distintos ramos da ciência.
Uma figura é auto-semelhante se cada parte dela é semelhante a toda a figura, ou seja, é uma forma irregular que pode ser subdividida em partes, e cada parte será uma cópia reduzida da forma toda.
Podemos ainda dizer que os fractais são figuras geradas por processos iterativos “infinitos” providos, entre outras coisas, de rotações, translações e semelhanças de figuras geométricas.
Um fractal é gerado a partir de uma fórmula matemática, muitas vezes simples, mas que aplicada de forma iterativa, produz resultados fascinantes e impressionantes.
Além de se apresentarem como formas geométricas, os fractais representam funções reais ou complexas e apresentam determinadas características: auto-semelhança, a dimensionalidade e a complexidade infinita.
APLICAÇÕES DOS FRACTAIS
Nos últimos 20 anos, a geometria fractal e seus conceitos têm se tornado uma ferramenta central em muitas ciências, como: geologia, medicina, meteorologia, entre outros.
Ao mesmo tempo, fractais são do interesse de designers gráficos e cineastas pela sua habilidade de criar formas novas e mundos artificiais mais realistas.
Na Computação Gráfica, fractais, entre outras coisas, são utilizados para representar elementos da Natureza como crateras, planetas, costas, superfícies lunares, plantas, ondulações em águas, representação de nuvens; também são de grande importância para a criação de efeitos especiais em filmes, como por exemplo a criação do planeta Gênesis no filme Jornada nas Estrelas 2.
Os fractais auxiliam na criação de novas formas e mundos artificiais mais realistas, e na representação de elementos da natureza que a geometria tradicional não pode representar.
Minha opinião em respeito ao estudo de fractais no colégio:
Acho que seria interessante estudar pois antes desta pesquisa não sabíamos nem o que era “fractais”.
quarta-feira, 13 de agosto de 2008
Parabéns CIEP
Agradeço a minha escola querida
Por me ensinar
Que a cada dia
Podemos recomeçar
Por me fazer sentir Um alguém diferente
E por eu saber
Que sempre contigo
Poderei contar. Quão importante torna-se a Escola,
nossa segunda casa, que conduz mentes humanas a serem mais fortes e perseverantes, a construírem novas formas de vida e escolha, onde encontramos pessoas que farão parte de nossas vidas para sempre.
Parabéns CIEP e muito obrigada